

Málaga, Mes de 2013

Executive Summary

TITLE:	D2.2.1: Complexity analysis of canonical algorithms
PAPERS RELATED:	
	• F. Chicano, A. M. Sutton, D. Whitley and E. Alba, Fitness Probability Distribu- tion of Bit-Flip Mutation, Evolutionary Computation (accepted for publication), ar- Xiv:1309.2979
Abstract:	We develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a poly- nomial in p , the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. Using these theoretical results we can compute the first hitting time of a $(1 + \lambda)$ Evolutionary Algorithm. With this framework we are able to compute exact expressions for the expected runtime of the EA solving Onemax-based functions as a function of p , the probability of flipping a bit in the mutation.
GOALS:	
	1. An exact expression for the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation
	2. Exact expressions for the expected runtime of the EA solving Onemax-based functions.
Conclusions:	
	1. We derived an expression for the probability mass function of the fitness value after applying bit-flip mutation to a given solution. The expression takes an elegant matrix form in which we can distinguish a problem-dependent part and an operator-dependent part. The problem-dependent part can be obtained using the elementary landscape decomposition of the objective function of the problem and their powers. The operator- dependent part depends only on the probability of flipping a bit.
	2. The probability mass function allowed us to derive the exact expression for the runtime of a $(1 + \lambda)$ EA for solving Onemax, finding a connection between landscape theory and runtime analysis. Using this expression we obtained the optimal probability for bit-flip mutation as a function of n , the number of bits.
Relation with past	
DELIVERABLES:	PRE: D2.4.1 (advisable reading)
	POST: D2.4.2 (advisable reading)