

Málaga, January 2013

Executive Summary

TITLE:	D4.4.2: Analysis and evaluation of different metaheuristics on benchmarks of continuous optimization problems (CEC/GECCO benchmarks)
PAPERS RELATED:	J. García-Nieto, E. Alba. Hybrid PSO6 for Hard Continuous Optimization. Soft Computing, In Press (2013). DOI: http://dx.doi.org/10.1007/s00500-010-0648-1
	José García-Nieto, and Enrique Alba. Why Six Informants Is Optimal in PSO. In ACM Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'12). pp.25-32, Phyladelpia, USA, July 2012
Abstract:	When designing new optimization algorithms, the structured evaluation and analysis by means of different benchmarks of academic problems is a must [SHLDCAT05]. These bench- marks will allow measuring the efficiency, efficacy, scalability, and robustness of new algorith- mic proposals in relation to existing ones in the field. The target benchmarking problems comprise continuous (CEC/SOCO/GECCO-BBOB) competition sets for constrained/un- constrained, mono/multi-objective, large-scale, etc. optimization problems. Our new pro- posals, based on restarting methods RPSO-vm, velocity modulation SMPSO, optimally informed Particle Swarm Optimization (PSO6), and different hybrids with MTS local search (PSO6-LS1 and PSO6-LS2), are then validated in the scope of standard benchmarks (CEC'05, BBOB'10, and SOCO,10), and compared with other sophisticated algorithms in the current state of the art.
GOALS:	
	1. Generation of new proposal PSO6 based on the empirically validated number of infor- mant particles.
	2. Our developed methods are empirically located in the top of most outstanding algo- rithms in the current state of the art.
Conclusions:	1. The use of standard benchmarks provides a validation framework for testing the actual performance of new algorithmic proposals in comparison with the most outstanding methods.
Relation with past deliverables:	PRE: D4.1.1-2012 (advisable reading)
Others:	[SHLDCAT05] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, YP. Chen, A. Auger and S. Tiwari. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Ses- sion on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, May 2005 AND KanGAL Report #2005005, IIT Kanpur, India